
How should outliers be dealt with in linear regression analysis?
What statistical tests or rules of thumb can be used as a basis for excluding outliers in linear regression analysis? Are there any special considerations for multilinear regression?
Why are regression problems called "regression" problems?
I was just wondering why regression problems are called "regression" problems. What is the story behind the name? One definition for regression: "Relapse to a less perfect or developed state."
regression - How to calculate the slope of a line of best fit that ...
Dec 17, 2024 · This kind of regression seems to be much more difficult. I've read several sources, but the calculus for general quantile regression is going over my head. My question is this: How can I …
Multivariable vs multivariate regression - Cross Validated
Feb 2, 2020 · Multivariable regression is any regression model where there is more than one explanatory variable. For this reason it is often simply known as "multiple regression". In the simple …
What's the difference between correlation and simple linear regression ...
Aug 1, 2013 · Note that one perspective on the relationship between regression & correlation can be discerned from my answer here: What is the difference between doing linear regression on y with x …
regression - Difference between forecast and prediction ... - Cross ...
I was wondering what difference and relation are between forecast and prediction? Especially in time series and regression? For example, am I correct that: In time series, forecasting seems to mea...
regression - When is R squared negative? - Cross Validated
Also, for OLS regression, R^2 is the squared correlation between the predicted and the observed values. Hence, it must be non-negative. For simple OLS regression with one predictor, this is equivalent to …
regression - Trying to understand the fitted vs residual plot? - Cross ...
Dec 23, 2016 · A good residual vs fitted plot has three characteristics: The residuals "bounce randomly" around the 0 line. This suggests that the assumption that the relationship is linear is reasonable. The …
correlation - What is the difference between linear regression on y ...
The Pearson correlation coefficient of x and y is the same, whether you compute pearson(x, y) or pearson(y, x). This suggests that doing a linear regression of y given x or x given y should be the ...
regression - Interpreting the residuals vs. fitted values plot for ...
None of the three plots show correlation (at least not linear correlation, which is the relevant meaning of 'correlation' in the sense in which it is being used in "the residuals and the fitted values are …